Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films.

نویسندگان

  • H Zhao
  • Z Fan
  • H Liang
  • G S Selopal
  • B A Gonfa
  • L Jin
  • A Soudi
  • D Cui
  • F Enrichi
  • M M Natile
  • I Concina
  • D Ma
  • A O Govorov
  • F Rosei
  • A Vomiero
چکیده

N-type metal oxide solar cells sensitized by infrared absorbing PbS quantum dots (QDs) represent a promising alternative to traditional photovoltaic devices. However, colloidal PbS QDs capped with pure organic ligand shells suffer from surface oxidation that affects the long term stability of the cells. Application of a passivating CdS shell guarantees the increased long term stability of PbS QDs, but can negatively affect photoinduced charge transfer from the QD to the oxide and the resulting photoconversion efficiency (PCE). For this reason, the characterization of electron injection rates in these systems is very important, yet has never been reported. Here we investigate the photoelectron transfer rate from PbS@CdS core@shell QDs to wide bandgap semiconducting mesoporous films using photoluminescence (PL) lifetime spectroscopy. The different electron affinity of the oxides (SiO2, TiO2 and SnO2), the core size and the shell thickness allow us to fine tune the electron injection rate by determining the width and height of the energy barrier for tunneling from the core to the oxide. Theoretical modeling using the semi-classical approximation provides an estimate for the escape time of an electron from the QD 1S state, in good agreement with experiments. The results demonstrate the possibility of obtaining fast charge injection in near infrared (NIR) QDs stabilized by an external shell (injection rates in the range of 110-250 ns for TiO2 films and in the range of 100-170 ns for SnO2 films for PbS cores with diameters in the 3-4.2 nm range and shell thickness around 0.3 nm), with the aim of providing viable solutions to the stability issues typical of NIR QDs capped with pure organic ligand shells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating photoinduced charge transfer in double- and single-emission PbS@CdS core@shell quantum dots.

We present for the first time detailed investigation of the charge transfer behavior of PbS@CdS core@shell quantum dots (QDs) showing either a single emission peak from the core or intriguing double emission peaks from the core and shell, respectively. A highly non-concentric core@shell structure model was proposed to explain the origin of double emissions from monodisperse QDs. Their charge tr...

متن کامل

Biomineralization of PbS and PbS–CdS core–shell nanocrystals and their application in quantum dot sensitized solar cells†

Biomineralization utilizes biological systems to synthesize functional inorganic materials for application in diverse fields. In the current work, we enable biomineralization of quantum confined PbS and PbS–CdS core–shell nanocrystals and demonstrate their application in quantum dot sensitized solar cells (QDSSCs). An engineered strain of Stenotrophomonas maltophilia is utilized to generate a c...

متن کامل

Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots.

We report on the fabrication of PbS-CdS (core-shell) quantum dot (QD)-sensitized solar cells by direct adsorption of core-shell QDs on mesoporous TiO2 followed by 3-mercaptopropionic acid ligand exchange. PbS-CdS QD-sensitized solar cells show 4 times higher efficiency with respect to solar cells sensitized with PbS QDs. The significantly enhanced mean electron lifetime and electron diffusion l...

متن کامل

Investigation of the Third-Order Nonlinear Optical Susceptibilities and Nonlinear Refractive Index In Pbs/Cdse/Cds Spherical Quantum Dot

In this study the third order nonlinear susceptibilities are theoreticallycalculated for an electron confined in an isolated PbS/ CdSe/ CdS spherical core-shellshellquantum dots. Our calculation is associated with intersubband transitions in theconduction band. We used the effective mass approximation in this study which is asimple and straightforward study of the third-order optical nonlineari...

متن کامل

Gating of hole transfer from photoexcited PbS quantum dots to aminoferrocene by the ligand shell of the dots.

Photoinduced hole transfer from PbS quantum dots (QDs) to aminoferrocene only occurs if the ligand shell of the QD allows aminoferrocene to gain direct access to the inorganic core of the QD; the permeability of the ligand shell is therefore more important than its conductivity in determining the probability of interfacial charge transfer.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 12  شماره 

صفحات  -

تاریخ انتشار 2014